NMR study of stacking interactions between adenine and xanthine rings

Toshio Itahara

Department of Bioengineering, Faculty of Engineering, Kagoshima University, Korimoto, Kagoshima 890, Japan

A relationship between the chemical shifts of adenine and xanthine ring protons of 7-[ω -(6-aminopurin-9yl)alkyl]-1,3-dimethylxanthines (1) and the number of carbons (n = 2-10) in their polymethylene chains has been compared with that of 1-[ω -(6-aminopurin-9-yl)alkyl]-3,7-dimethylxanthines (2) in the buffer solutions at pD 7.0, 1.0 and 13.0 and in organic solvents. The relationship of 1 is clearly distinct from that of 2. The concentration dependence and the effects of temperature on the chemical shifts of 1 and 2 have also been investigated. While the upfield shifts of the ring protons of 1 and 2 in the buffer solutions at pD 7.0 and 13.0 are explained in terms of stacking interactions between adenine and xanthine rings, the results in the buffer solution at pD 1.0 may be due to cation- π interactions. On the basis of these data, it can be assumed that the stacking interactions do not only consist of interactions between adenine and xanthine rings.

Recently, increasing interest is being shown in non-covalent intermolecular interactions. Stacking interactions are one of these non-covalent interactions between aromatic π -systems $(\pi - \pi \text{ interactions})$ and have been of interest in connection with the structures of nucleic acids.¹ Sarai et al.² reported that the origin of the DNA helical structure was attributed largely to the stacking interactions of the base pairs. The interactions also seem to have a fundamental significance as intermolecular interactions in biological systems, e.g. the photosynthetic reaction center,³ the recognition of cofactors by enzymes such as flavoenzymes.⁴ and the connection between nucleic acid bases and aromatic amino acids.⁵ Furthermore, it is noteworthy that the interactions are widely applicable to the molecular recognition of host-guest molecules.⁶ However, the mechanism of stacking interactions is still obscure. For example, do stacking interactions consist of only non-covalent interactions between aromatic π -systems? One of the main purposes of this paper is to elucidate the question.

Much attention has been paid to the stacking interactions of the adenine ring, and the preparation of the adenine host molecules⁷ has been extensively investigated. On the other hand, the UV and ¹H NMR spectra of compounds linked between two adenine rings⁸ and between adenine and aromatic molecules such as the other nucleic acid bases,^{8a} indole,⁹ flavin,¹⁰ DNA intercalating molecules,^{11,12} and naphthalene¹³ with polymethylene chains⁸⁻¹¹ or other linkers^{12,13} have been studied as model compounds for the stacking interactions. When the ¹H NMR spectra of these compounds are measured in low concentrations close to those used in UV measurements on the studies of hypochromism,^{8a-c} it is almost only the interactions between two aromatic rings of the compounds which are observed.^{8d} The NMR data represent a population-weighted average of contributions from stacked and unstacked conformations, and random conformational motions of the compounds are presumed to become progressively greater with the length of linkers. Because changes of chemical shifts of the aromatic ring protons are expected to correspond to an increase in the population of stacked conformers compared with the random motions,^{8d} it is of interest to investigate relationships between the chemical shifts and the length of the linkers in connection with the mechanism of stacking interactions.

Since theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) are isomeric with each other, the present investigation was undertaken to determine the difference in

Theophylline

(1,3-Dimethylxanthine)

Theobromine (3,7-Dimethylxanthine)

stacking interactions between 7- $[\omega$ -(6-aminopurin-9-yl)alkyl]-1,3-dimethylxanthines (1) and 1- $[\omega$ -(6-aminopurin-9-yl)alkyl]-3,7-dimethylxanthines (2), which are linked between adenine and theophylline and between adenine and theobromine by polymethylene chains, respectively.

Results and discussion

The preparation of **1** and **2** was performed by treatment of 9-(ω -bromoalkyl)adenine (**3**) with theophylline or theobromine. The ¹H NMR measurements of **1** and **2** were performed in the buffer solutions at pD 7.0, 1.0 and 13.0¹⁴ containing sodium

Fig. 1 Relationship between the chemical shifts of the aromatic protons of 1b and 2c and the concentrations in the buffer solution at pD 7.0 at 27 $^{\circ}$ C

Fig. 2 Relationship between the chemical shifts of the methyl group of the xanthine ring of 1 and 2 and the carbon numbers of the polymethylene chains in the buffer solution at pD 7.0 at 27 $^{\circ}$ C

3-(trimethylsilyl)[2,2,3,3- ${}^{2}H_{4}$]propionate and in organic solvents such as CD₃OD, CDCl₃ and CD₃COCD₃ containing tetramethylsilane as the references.

In order to establish appropriate concentrations of 1 and 2 for the ¹H NMR spectroscopy, a search was made for concentration dependence of the chemical shifts of the aromatic ring protons of 1b and 2c in the buffer solution at pD 7.0. Fig. 1 shows that aggregation of 1b and 2c in the buffer solution at pD 7.0 occurred gradually above 1.0 and 3.0 mM, respectively. From a consideration of the concentration dependence, aggregation of 1 and 2 is expected to be practically negligible at concentrations of less than 1–3 mmol dm⁻³.

The hydrogen atoms of the adenine ring at the 2- and 8-positions and of the xanthine ring at the 8-position of **1a–i** (n = 2-10) and **2a–i** (n = 2-10) were assigned on the basis of the ¹H NMR spectra of the compounds containing an 8-deuterioadenine moiety as well as the comparison of the ¹H NMR spectra with those of 9,9'-(alkane- α,ω -diyl)diadenines.^{8d} The compounds containing an 8-deuterioadenine moiety were obtained by the heating of 1 or 2 in D₂O under reflux, although the xanthine moieties of 1 and 2 also somewhat underwent the deuterium exchange at their 8-positions.

The relationship between the chemical shifts of the adenine and xanthine ring protons of low concentrations (less than 1.0 mmol dm⁻³) of **1** and the number of carbon atoms in the polymethylene chains was compared with that of **2**. The two methyl groups of the xanthine ring of **1** and **2** were assigned on the basis of the comparison of ¹H NMR spectra of **1** with those of **2**. The results are summarized in Tables 1 and 2. It can be seen from Tables 1 and 2 that the upfield shifts of the chemical

Fig. 3 Relationship between the chemical shifts of the aromatic protons of 1 (n = 2-10) and 2 (n = 2-10) and the carbon numbers of the polymethylene chains in the buffer solution at pD 7.0 at 27 °C. The values of the chemical shifts of the protons are shown in Table 1 and Table 2.

shifts of two methyl groups of the xanthine ring of 1 and 2 in the buffer solutions used were pronounced when there were 2, 3 and 4 carbon atoms in the chain. Among the chemical shifts of the methyl groups at the 3-position of both 1 and 2, the chemical shifts of 1b and 2b (n = 3) were interestingly shifted to high field in the buffer solutions (Fig. 2).

The lines in Fig. 3 shows how the chemical shifts of the ring protons of 1 and 2 in the buffer solution at pD 7.0 varied with the number of carbons in the polymethylene chains at 27 °C. The upfield shifts of the ring protons of 1 and 2 are expected to result from the stacking interactions between the adenine and xanthine rings. Among the chemical shifts of adenine ring protons of 1, the chemical shifts of H-2 of 1c (n = 4) and of H-8 of **1b** (n = 3) were both shifted to high field. In Fig. 3, the two lines of the H-2 and H-8 protons of the adenine ring of 1 did not intersect each other, while the two lines of 2 intersected each other. The relationship of 1 is similar to that of 9,9'-(alkane- α, ω -diyl)diadenines reported previously.^{8d} On the other hand, the relationship of 2 was peculiar. It is particularly noteworthy that the upfield shifts of H-2 of 2c (n = 4) and H-8 of the adenine ring of 2a (n = 2) were prominent among the chemical shifts of adenine ring protons of 2.

The temperature dependence of the chemical shifts of 1a-d and 2a-d (n = 2-5) was studied in the range of 24 to 80 °C. The results are shown in Tables 3 and 4. The temperature dependence of the H-2 protons of the adenine ring was larger than that of the H-8 protons except for 2a. The notable upfield shifts of the H-2 of 2c and the H-8 of 2a, which are shown in Fig. 3, were confirmed by their temperature dependence. The H-2 proton of the adenine ring of 2c has pronounced temperature dependence, i.e. the differences between the chemical shifts of the H-2 proton of 2c at 24 °C and those at 80 °C were 0.124 ppm (in the case of the concentration of 0.75 mmol dm⁻³) and 0.165 ppm (at a concentration of 9.12 mmol dm⁻³). The difference of the H-8 proton of the adenine ring of 2a was 0.086 ppm. The temperature dependence of the chemical shifts of the methyl groups of the xanthine ring of 1 and 2 was not prominent, but the differences of the methyl group at the 3-position of 2b and 2c and of the methyl group at the 7-position of 2a were somewhat larger, compared with those of the other methyl group.

The NMR studies may offer significant information about stacked conformations. In view of the above data, stacked conformations of **2a** seem to be different from those of **2c**. That is to say, the stacked conformations may vary with the change of the carbon numbers of the polymethylene chains of **2a** and **2c**, although the stacked conformations of **2a** may result in the shorter polymethylene chain. The stacked conformations of **2a** and **2c** may be tentatively presumed to be the structures shown below.

Table 1	Chemical	shifts of	adenine	and xanth	ine ring	protons	of 1a –	·i ^a

Solvent, Temp.		1a (<i>n</i> = 2)	1b (<i>n</i> = 3)	1c (<i>n</i> = 4)	1d (<i>n</i> = 5)	1e (<i>n</i> = 6)	1f (<i>n</i> = 7)	1g (<i>n</i> = 8)	1i (<i>n</i> = 10)
pD 7.0. ^b 27 °C	Ade: H-2	7.985	8.043	7.978	8.033	8.117	8.152	8.170	8.180
1,	Ade: H-8	7.948	7.848	7.945	8.029	8.082	8.117	8.130	8.148
	Xan: H-8	7.786	7.808	7.835	7.792	7.882	7.913	7.927	7.954
	Xan: Me-3	3.468	3.377	3.447	3.520	3.535	3.530	3.527	3.525
	Xan: Me-1	3.184	3.214	3.244	3.310	3.307	3.306	3.304	3.302
pD 7.0. 50 °C	Ade: H-2	8.012	8.066	8.007	8.068	8.150	8.179	8.205	8.215
r,	Ade: H-8	7.938	7.865	7.943	8.022	8.080	8.114	8.123	8.139
	Xan: H-8	7.755	7,798	7.824	7.786	7.875	7.907	7.921	7.940
	Xan: Me-3	3.470	3.388	3.466	3.519	3.535	3.538	3.538	3.540
	Xan: Me-1	3.200	3.224	3.249	3.310	3.314	3.317	3.318	3.318
pD 1.0. ^c 27 °C	Ade: H-2	8.290	8.381	8.354	8.396	8.412	8.414	8.421	8.420
I ··· , ···	Ade: H-8	8.102	8.189	8.232	8.290	8.330	8.346	8.352	8.360
	Xan: H-8	7.800	7.941	7.974	7.984	8.053	8.082	8.094	8.098
	Xan: Me-3	3.496	3,436	3.496	3.525	3.534	3.532	3.531	3.530
	Xan: Me-1	3.234	3.263	3.273	3.325	3.326	3.326	3.327	3.327
pD 1.0. 50 °C	Ade: H-2	8.290	8.381	8.358	8.399	8.417	8.420	8.426	8,427
I, the second	Ade: H-8	8.117	8.201	8.236	8.289	8.328	8.342	8.349	8.357
	Xan: H-8	7.803	7.932	7.949	7.961	8.032	8.057	8.068	8.072
	Xan: Me-3	3.492	3.444	3.501	3.524	3.533	3.530	3.529	3.529
	Xan: Me-1	3.236	3.266	3.276	3.323	3.324	3.326	3.326	3.327
pD 13.0, ^{<i>b</i>} 27 °C	Ade: H-2	7.998	8.053	7.976	8.029	8.128	8.160	8.175	8.183
	Ade: H-8	7.952	7.854	7.944	8.029	8.082	8.123	8.137	8.144
	Xan: H-8	7.787	7.812	7.834	7.790	7.881	7.918	7.934	7.951
	Xan: Me-3	3.471	3.384	3.456	3.520	3.538	3.535	3.533	3.532
	Xan: Me-1	3.186	3.221	3.251	3.311	3.311	3.310	3.309	3.308
pD 13.0. 50 °C	Ade: H-2	8.012	8.072	8.007	8.068	8.153	8.183	8.211	8.208
1	Ade: H-8	7.940	7.868	7.941	8.023	8.081	8.116	8.129	8.137
	Xan: H-8	7.755	7.800	7.823	7.787	7.875	7.910	7.927	7.944
	Xan: Me-3	3.469	3.390	3.466	3.520	3.539	3.534	3.533	3.533
	Xan: Me-1	3.200	3.226	3.249	3.311	3.316	3.316	3.318	3.318
CD ₂ OD. ^{<i>d</i>} 27 °C	Ade: H-2	8.081	8.142	8.115	8.160	8.182	8.185	8.188	8.190
- j - , · · -	Ade: H-8	7.852	8.040	8.048	8.091	8.104	8.106	8.108	8.111
	Xan: H-8	7.524	7.895	7.875	7.873	7.902	7.907	7.911	7.914
	Xan: Me-3	3.486	3,484	3.512	3.534	3.535	3.533	3.535	3.533
	Xan: Me-1	е	е	e	3.348	3.347	3.345	3.346	3.346
CDCl ₁ , ^f 27 °C	Ade: H-2	8.364	8.370	8.343	8.348	8.349	8.355	8.360	8.365
3)	Ade: H-8	7.459	7.826	7.791	7,788	7.788	7.787	7.786	7,784
	Xan: H-8	7.084	7.816	7.513	7,493	7.521	7.524	7.524	7.523
	Xan: Me-3	3.562	3.591	3.583	3.591	3.592	3.592	3.593	3.595
	Xan: Me-1	3.458	3.415	3.409	3.408	3.404	3.405	3.405	3,407
CD ₃ COCD ₃ . ^f 27 °C	Ade: H-2	8.119	8.179	8.141	8.157	8.169	8.176	8.175	8.185
3 37 0	Ade: H-8	7.679	8.023	7.985	7.984	7.982	7.994	7.990	7.010
	Xan: H-8	7.418	7.997	7.877	7.846	7.868	7.872	7.878	7.886
	Xan: Me-3	3.439	3.473	3.470	3.480	3.480	3.480	3.482	3.482
	Xan: Me-1	3.314	3.307	3.274	3.292	3.285	3.287	3.288	3.288

^{*a*} The ¹H NMR spectra of **1** were measured at least twice and the chemical shifts were reproduced within ± 0.003 ppm. ^{*b*} The concentrations of **1** in the buffer solutions at pD 7.0 and 13.0 were 1.0 mmol dm⁻³ except for **1g** (0.5 mmol dm⁻³) and **1i** (0.1 mmol dm⁻³). ^{*c*} The concentrations of **1** in the buffer solution at pD 1.0 were 1.5 mmol dm⁻³ except for **1g** (1.0 mmol dm⁻³) and **1i** (0.5 mmol dm⁻³). ^{*d*} The concentrations of **1** in CD₃OD was 2.0 mmol dm⁻³. ^{*c*} The methyl peaks were overlapped with those of CD₃OD. ^{*f*} The concentrations of **1** in CDCl₃ and in CD₃COCD₃ were 2.0 mmol dm⁻³ except for **1a**, **b** (1.0 mmol dm⁻³).

In an effort to determine the effect of the protonation of the adenine ring on the stacking, the NMR spectra of 1 and 2 in the buffer solution at pD 1.0 were studied.¹⁴ Fig. 4 shows the concentration dependence of 1c and 2c in the buffer solution at pD 1.0. The aggregation of 1c and 2c occurred gradually above 10 mM. Whereas Fig. 1 shows that the aggregation of 1b and 2c in the buffer solution at pD 7.0 produced a shift to a higher field in the adenine proton resonance as compared to the isolated ones, the chemical shifts of adenine ring protons of 1c and 2c in the buffer solution at pD 1.0 were shifted to a lower field with the increase of the concentrations. The results are similar to those

of the interactions between N^7 -methylated guanine and indole rings.¹⁵ Ishida and co-workers¹⁵ explained the results in terms of ionic interactions between the electron positive proton of guanine and the π -electron-rich indole ring.

Fig. 5 shows the relationship between the chemical shifts of the concentrations of less than 1.5 mmol dm⁻³ of 1 and 2 and the number of carbons in the linkage chain, in the buffer solution at pD 1.0 at 27 °C. The relationship in the buffer solution at pD 1.0 at 50 °C was similar to that at 27 °C (Tables 1 and 2). Table 4 further shows that the effect of temperature on the H-2 proton of the adenine ring of 2c in the buffer solution at pD 1.0 was significantly smaller than that in the buffer solution at pD 7.0. The data reported herein indicate that the interactions between adenine and xanthine rings in the buffer solution at pD 1.0 were slightly affected by the temperature. The chemical shifts of H-8 protons of adenine and xanthine rings of 1 were shifted to higher fields with the decrease of the carbon numbers but the shifts of H-2 of the adenine ring of 1 were small as compared with those of the H-8 protons. Furthermore, the chemical shifts of the ring protons of 2 were almost kept constant when more than five carbons were present in the poly-

Table 2	Chemical	shifts of	adenine	and xanthine	ring proto	ons of 2a–i ^a
					<u> </u>	

Solvent, Temp.		2a (<i>n</i> = 2)	2b (<i>n</i> = 3)	2c (<i>n</i> = 4)	2d (<i>n</i> = 5)	2e (<i>n</i> = 6)	2f (<i>n</i> = 7)	2h (<i>n</i> = 9)	2i (<i>n</i> = 10)
pD 7.0. ^b 27 °C	Ade: H-2	8.157	8.069	7,929	8.039	8.150	8,160	8,165	8,167
pb ///0, 2/ 0	Ade: H-8	7.826	8.035	8.055	8.094	8.133	8.150	8.155	8.157
	Xan: H-8	7.812	7.782	7.864	7.901	7.891	7.876	7.877	7.877
	Xan: Me-7	3 728	3 820	3 888	3 890	3 908	3 914	3 920	3 924
	Xan: Me-3	3.407	3.293	3.405	3.443	3.470	3.492	3.495	3.498
pD 7.0, 50 °C	Ade: H-2	8 142	8 093	7 977	8 090	8 182	8 193	8 200	8 202
	Ade: H-8	7 846	8 041	8 056	8 078	8 115	8 135	8 143	8 145
	Xan: H-8	7 820	7 779	7 856	7 890	7 892	7 880	7 866	7 867
	Xan: Me-7	3 740	3 824	3 892	3 901	3 910	3 920	3 925	3 928
	Xan: Me-3	3 407	3 317	3 422	3 450	3 479	3 493	3 500	3 503
pD10°27°C	Ade: H-2	8 321	8 381	8 355	8 398	8 411	8 419	8 420	8 420
pb 110, 27 C	Ade: H-8	8 233	8 358	8 348	8 354	8 363	8 369	8 368	8 368
	Xan: H-8	7 945	7 933	7 995	8 015	8 021	8 022	8 021	8 022
	Xan: Me-7	3 814	3 898	3 933	3 944	3 951	3 957	3 956	3 957
	Xan: Me-3	3 427	3 405	3 468	3 487	3 500	3 513	3 513	3 514
pD10_50°C	Ade: H-2	8 320	8 385	8 364	8 402	8 418	8 425	8 428	8 429
p2 110,00 C	Ade: H-8	8 232	8 357	8 347	8 350	8 361	8 367	8 365	8 365
	Xan: H-8	7 935	7 926	7.982	8 000	8 007	8 009	8 008	8 009
	Xan: Me-7	3 817	3 898	3 932	3 943	3 951	3 957	3 956	3 957
	Xan: Me-3	3 425	3 414	3 472	3 487	3 502	3 513	3 514	3 514
рD 13.0, ^{<i>b</i>} 27 °С	Ade: H-2	8.160	8.075	7.929	8.031	8.144	8.158	8.162	8.164
	Ade: H-8	7.828	8.038	8.054	8.088	8.128	8.148	8.153	8.156
	Xan: H-8	7.816	7.781	7.862	7.892	7.886	7.876	7.873	7.874
	Xan: Me-7	3.731	3.829	3.874	3.886	3.902	3.912	3.918	3.920
	Xan: Me-3	3.410	3.306	3.404	3.438	3.466	3.493	3.499	3.502
pD 13.0. 50 °C	Ade: H-2	8.146	8.094	7.976	8.086	8.171	8.189	8.199	8.200
r,	Ade: H-8	7.848	8.042	8.058	8.075	8.109	8.135	8.143	8.145
	Xan: H-8	7.824	7.777	7.855	7.884	7.878	7.872	7.865	7.864
	Xan: Me-7	3.742	3.829	3.880	3.897	3.907	3.923	3.924	3.925
	Xan: Me-3	3 408	3 322	3 421	3 447	3 477	3 498	3 505	3 506
$CD_{2}OD^{d} 27 °C$	Ade: H-2	8 067	8 142	8 131	8 166	8 184	8 189	8 192	8 194
	Ade: H-8	7.910	8.170	8.131	8.117	8.131	8.129	8.124	8.122
	Xan: H-8	7,790	7.817	7.834	7.841	7.842	7.842	7.841	7.842
	Xan: Me-7	3,798	3.931	3.943	3.947	3.956	3.958	3.962	3.964
	Xan: Me-3	3 414	3 475	3 495	3,501	3 509	3 513	3 516	3 518
CDCl ₂ , ^e 27 °C	Ade: H-2	8.227	8.341	8.344	8.350	8.354	8.358	8.365	8.368
	Ade: H-8	7.773	7.988	7.879	7.804	7.806	7.805	7.800	7.794
	Xan: H-8	7.473	7.503	7.501	7.498	7.500	7.498	7.494	7.492
	Xan: Me-7	3.872	3.972	3.975	3.975	3.980	3.982	3.982	3.983
	Xan: Me-3	3.524	3.563	3.566	3.566	3.568	3.571	3.571	3.572
CD ₂ COCD ₂ ^e 27 °C	Ade: H-2	7.951	8.157	8.148	8.160	8.169	8.172	8.179	8.180
,,,	Ade: H-8	7.951	8.105	8.039	8.008	8.021	8.023	8.014	8.007
	Xan: H-8	7.767	7.810	7.806	7.801	7.803	7.803	7.805	7.807
	Xan: Me-7	3.835	3.966	3.963	3.968	3.970	3.972	3.974	3.976
	Xan: Me-3	3.388	3.458	3.456	3.458	3.460	3.463	3.466	3.468

^{*a*} The ¹H NMR spectra of **2** were measured at least twice and the chemical shifts were reproduced within ± 0.004 ppm. ^{*b*} The concentrations of **2** in the buffer solutions at pD 7.0 and 13.0 were 1.0 mmol dm⁻³ except for **2h** (0.5 mmol dm⁻³) and **2i** (0.1 mmol dm⁻³). ^{*c*} The concentrations of **2** in the buffer solution at pD 1.0 was 1.5 mmol dm⁻³ except for **2h** (1.0 mmol dm⁻³) and **2i** (0.2 mmol dm⁻³). ^{*d*} The concentrations of **2** in CD₃OD were 2.0 mmol dm⁻³. ^{*e*} The concentrations of **2** in CD₃OD were 2.0 mmol dm⁻³. ^{*e*} The concentrations of **2** in CD₃OD were 2.0 mmol dm⁻³.

methylene chains. When the data shown in Figs. 4 and 5 are compared with those in Figs. 1 and 3, interactions of **1** and **2** in the buffer solution at pD 1.0 seem to be different from those in the buffer solution at pD 7.0. The initial stage of the reaction of the adenine ring in aqueous solution at pH 1 instead of pH 7 is the protonation at the 1-position.¹ Therefore, the results in the buffer solution at pD 1.0 may be interpretable in terms of electrostatic interactions between the cation formed by the protonation of the adenine ring and the π -electrons of xanthine ring (cation– π interactions¹⁶), whereas the interactions in the buffer solution at pD 7.0 are due to stacking interactions.

The relationship between the chemical shifts of the ring protons of low concentrations (less than 1.0 mmol dm⁻³) of **1** and **2** and the number of carbons in the polymethylene chains in the buffer solution at pD 13.0¹⁴ at 27 °C (Tables 1 and 2) resembled that in the buffer solution at pD 7.0. The relationship in the buffer solution at pD 13.0 at 50 °C was also similar to that in the buffer solution at pD 7.0 at 50 °C. Accordingly, stacked conformations of **1** and **2** may not be altered by a change of pH in the pH 7 to 13 region.

The relationship between the chemical shifts of the concentrations of less than 2.0 mmol dm^{-3} of **1** and **2** and the number of carbons was investigated in organic solvents such as CD_3OD , $CDCl_3$ and CD_3COCD_3 at 27 °C in order to compare with that in aqueous solutions (Tables 1 and 2). The relationship in CD_3OD is somewhat similar to that in the buffer solution at pD 7.0, although the change of the chemical shifts was very small. When the number of carbons in the polymethylene chains was more than 4, the chemical shifts of 1 and 2 in $CDCl_3$ and in CD_3COCD_3 were little influenced by the carbon numbers. Furthermore, the prominent upfield shifts of H-2 of 2c (n = 4) in the buffer solution at pD 7.0 were not observed in $CDCl_3$ and in CD_3COCD_3 . The results confirmed an effect of water as solvent on the aggregation of 1 and 2.

If stacking interactions depend only on interactions between two aromatic π -systems, the relationships between the chemical shifts and the carbon numbers of **1** in the buffer solutions at pD 7.0 and 13.0 are expected to be similar to those of **2**. However, the relationships of **1** in aqueous solutions were plainly distinct from those of **2**. In view of the results, one might conclude that the stacking interactions did not consist of only interactions between adenine and xanthine rings.

Stacking interactions between aromatic molecules play an important role in the tertiary structures of biomolecules, but

	1a (conc	centration: 2.	40 mmol dm	u ⁻³)		1b (2.46 mmol dm ⁻³)					
T/°C	Ade-2	Ade-8	Xan-8	Xan-Me-3	Xan-Me-1	Ade-2	Ade-8	Xan-8	Xan-Me-3	Xan-Me-1	
24	7.976	7.944	7.786	3.466	3.179	8.035	7.841	7.803	3.372	3.210	
30	7.984	7.942	7.779	3.466	3.184	8.042	7.845	7.800	3.375	3.213	
40	7.996	7.939	7.766	3.467	3.191	8.054	7.854	7.798	3.381	3.218	
50	8.008	7.936	7.754	3.468	3.197	8.064	7.863	7.795	3.386	3.223	
60	8.019	7.931	7.740	3.468	3.205	8.074	7.870	7.792	3.392	3.228	
70	8.030	7.927	7.727	3.469	3.210	8.083	7.877	7.788	3.396	3.231	
80	8.040	7.922	7.715	3.469	3.217	8.092	7.884	7.785	3.401	3.235	
$\Delta \delta^{b}$	+0.064	-0.022	-0.071	+0.003	+0.038	+0.057	+0.043	-0.018	+0.029	+0.025	
	$1c (1.70 \text{ mmol dm}^{-3})$					1d (1.78 mmol dm ⁻³)					
T/°C	Ade-2	Ade-8	Xan-8	Xan-Me-3	Xan-Me-1	Ade-2	Ade-8	Xan-8	Xan-Me-3	Xan-Me-1	
24	7.960	7.934	7.827	3.446	3.244	8.007	8.019	7.786	3.511	3.302	
30	7.968	7.934	8.825	3.449	3.244	8.024	8.019	7.785	3.512	3.303	
40	7.985	7.935	7.822	3.456	3.245	8.044	8.019	7.784	3.513	3.305	
50	8.000	7.936	7.819	3.461	3.245	8.061	8.018	7.784	3.515	3.307	
60	8.016	7.938	7.816	3.467	3.246	8.078	8.018	7.783	3.516	3.308	
70	8.030	7.940	7.812	3.471	3.247	8.094	8.017	7.783	3.517	3.310	
80	8.046	7.942	7.809	3.476	3.248	8.109	8.015	7.783	3.518	3.310	
$\Delta \delta^{b}$	+0.086	+0.008	-0.018	+0.030	+0.004	+0.102	-0.004	-0.003	+0.007	+0.008	

^{*a*} Chemical shifts in the buffer solution at pD 7.0. ^{*b*} $\Delta \delta = \delta(80 \text{ °C}) - \delta(24 \text{ °C}).$

Fig. 4 Relationship between the chemical shifts of the aromatic protons of 1c and 2c and the concentrations in the buffer solution at pD 1.0 at 27 $^{\circ}$ C

Fig. 5 Relationship between the chemical shifts of the aromatic protons of 1 and 2 and the carbon numbers of the polymethylene chains in the buffer solution at pD 1.0 at 27 °C. The values of the chemical shifts of the protons are shown in Tables 1 and 2.

the relation between the stacking interactions and backbone of biomolecules, such as in the case of DNA helical structures,^{1,2} is not sufficiently clear. The reason why the stacking of **1** is differ-

ent from that of 2 is of interest in connection with this relation. The difference may be attributable to hydrophobic effects of the polymethylene chains on the interactions between adenine and xanthine rings. Although the literature contains several references to the contribution of hydrophobic (solvophobic) effects to stacking interactions,^{77,17} this investigation suggests that the hydrophobic effects of the polymethylene chains as the linkers between two aromatic rings may influence the interactions.

Experimental

The melting points were determined on a Yanagimoto micro melting-point apparatus and are uncorrected. The elemental analyses were performed by the Analytical Center of Kyoto University.

NMR spectroscopy

The ¹H NMR spectra (400 MHz) and ¹³C NMR spectra (100 MHz) were obtained with a JEOL GSX400 spectrometer. The chemical shifts (δ values) were measured in parts per million (ppm) downfield from sodium 3-(trimethylsilyl)[2,2,3,3-²H₄]propionate in the buffer solutions and from tetramethylsilane in organic solvents as internal references. The concentrations of 3-(trimethylsilyl)[2,2,3,3-2H₄]propionate were 0.6 mmol dm⁻³ in the sodium phosphate buffer solution at pD 7.0 and 0.8 mmol dm⁻³ in the HCl-KCl buffer solution at pD 1.0 and the NaOH–NaCl buffer solution at pD 13.0. The ¹H NMR spectra were obtained from accumulation of 40-3000 free induction decays after each 45° pulse (5.7 µs) repeated every 5.73 s and were observed over a spectral width of 6002.4 Hz, corresponding to 32 768 data points for an acquisition time of 2.73 s. The ¹H NMR spectra of 1 and 2 were measured at least twice and the chemical shifts of 1 and 2 were reproduced within ± 0.003 and ± 0.004 ppm, respectively. J Values are given in Hz.

9-(\omega-Bromoalkyl)adenine (3). Into a solution of adenine (10 mmol) in DMF (150 ml), potassium carbonate (10 mmol) and α, ω -dibromoalkane (12 mmol) were added. The mixture was stirred at room temperature for 15–24 h. The resulting mixture was evaporated to give a residue which was extracted with chloroform. The extract was evaporated and chromatographed over silica gel. By elution with a mixture of ethyl acetate and methanol, **3** was obtained. The preparation of **3a**, ^{8d} **3b**, ^{8u} **3e**, ^{8d} **3f** ^{8d} and **3i** ^{8d} has already been reported.

	0											
	2a (conc	entration: 2.	50 mmol dm	-3)		2b (2.71 mmol dm ⁻³)						
<i>T/</i> °C	Ade-2	Ade-8	Xan-8	Xan-Me-7	Xan-Me-3	Ade-2	Ade-8	Xan-8	Xan-Me-7	Xan-Me-3		
24	8.152	7.799	7.824	3.722	3.402	8.047	8.019	7.770	3.815	3.286		
30	8.149	7.811	7.823	3.726	3.403	8.058	8.024	7.771	3.817	3.294		
40	8.145	7.826	7.822	3.732	3.403	8.073	8.030	7.772	3.820	3.305		
50	8.139	7.842	7.820	3.738	3.403	8.085	8.034	7.772	3.823	3.316		
60	8.133	7.856	7.816	3.743	3.403	8.095	8.038	7.772	3.825	3.324		
70	8.127	7.871	7.814	3.748	3.404	8.105	8.040	7.771	3.828	3.333		
80	8.118	7.885	7.809	3.753	3.404	8.116	8.043	7.771	3.831	3.342		
$\Delta \delta^{c}$	+0.034	-0.086	-0.015	+0.031	+0.002	+0.069	+0.024	-0.001	+0.016	+0.056		
	$2c (0.75 \text{ mmol dm}^{-3})$						$2c (9.12 \text{ mmol dm}^{-3})$					
T/°C	Ade-2	Ade-8	Xan-8	Xan-Me-7	Xan-Me-3	Ade-2	Ade-8	Xan-8	Xan-Me-7	Xan-Me-3		
24	7.920	8.055	7.864	3.888	3.405	7.869	8.018	7.840	3.843	3.363		
30	7.937	8.056	7.862	3.890	3.408	7.892	8.023	7.841	3.849	3.372		
40	7.957	8.057	7.860	3.892	3.415	7.926	8.033	7.842	3.858	3.387		
50	7.978	8.059	7.857	3.894	3.422	7.954	8.040	7.842	3.864	3.397		
60	8.000	8.060	7.854	3.895	3.428	7.982	8.045	7.842	3.872	3.409		
70	8.022	8.060	7.852	3.897	3.435	8.009	8.051	7.842	3.876	3.416		
80	8.044	8.062	7.850	3.899	3.441	8.034	8.056	7.842	3.882	3.425		
$\Delta \delta^{c}$	+0.124	+0.007	-0.014	+0.011	+0.036	+0.165	-0.038	+0.002	+0.039	+0.062		
	2c ^{<i>b</i>} (61.28 mmol dm ⁻³ in pD 1.0)					$2d (1.74 \text{ mmol dm}^{-3})$						
T/°C	Ade-2	Ade-8	Xan-8	Xan-Me-7	Xan-Me-3	Ade-2	Ade-8	Xan-8	Xan-Me-7	Xan-Me-3		
24	8.401	8.388	7.939	3.924	3.436	8.016	8.082	7.887	3.874	3.430		
30	8.403	8.388	7.938	3.926	3.441	8.031	8.082	7.886	3.877	3.434		
40	8.409	8.389	7.936	3.931	3.452	8.052	8.083	7.883	3.881	3.440		
50	8.413	8.389	7.934	3.936	3.460	8.072	8.083	7.880	3.885	3.445		
60	8.416	8.388	7.930	3.940	3.467	8.089	8.081	7.875	3.888	3.449		
70	8.419	8.387	7.925	3.943	3.472	8.105	8.080	7.872	3.892	3.453		
80	8.421	8.386	7.920	3.946	3.476	8.119	8.079	7.867	3.895	3.457		
$\Delta \delta^{c}$	+0.020	-0.002	-0.019	+0.022	+0.040	+0.103	-0.003	-0.020	+0.021	+0.027		

^{*a*} Chemical shifts in the buffer solution at pD 7.0 except for **2c**. ^{*b*} Chemical shifts in the buffer solution at pD 1.0. ^{*c*} $\Delta \delta = \delta(80 \text{ °C}) - \delta(24 \text{ °C})$.

9-(4-Bromobutyl)adenine (3c). Yield 22%, mp >300 °C; $\delta_{\rm H}({\rm CDCl}_3)$ 8.37 (s, 1H), 7.81 (s, 1H), 5.67 (s, 2H, NH₂), 4.25 (t, 2H, J 7.2), 3.44 (t, 2H, J 6.8), 2.10 (quint, 2H, J 7), 1.90 (quint, 2H, J 7); $\delta_{\rm C}({\rm CDCl}_3)$ 155.43, 153.10, 150.21, 140.27, 119.70, 42.98, 32.45, 29.55, 28.78. Found: C, 40.12; H, 4.47; N, 26.23. Calc. for C₉H₁₂N₅Br: C, 40.02; H, 4.48; N, 25.93%.

9-(5-Bromopentyl)adenine (3d). Yield 34%, mp 148–149 °C; $\delta_{\rm H}({\rm CDCl_3})$ 8.37 (s, 1H), 7.80 (s, 1H), 5.66 (s, 2H, NH₂), 4.22 (t, 2H, J 7.2), 3.39 (t, 2H, J 7.2), 1.95 (quint, 2H, J 7.2), 1.91 (quint, 2H, J 7.2), 1.51 (quint, 2H, J 7.2); $\delta_{\rm C}({\rm CDCl_3})$ 155.65, 153.02, 150.11, 140.31, 119.70, 43.71, 33.15, 31.99, 29.26, 25.21. Found: C, 42.14; H, 4.91; N, 24.64. Calc. for C₁₀H₁₄N₅Br: C, 42.27; H, 4.97; N, 24.65%.

9-(8-Bromooctyl)adenine (3g). Yield 30%, mp 140–141 °C; $\delta_{\rm H}({\rm CDCl}_3)$ 8.37 (s, 1H), 7.79 (s, 1H), 5.57 (s, 2H, NH₂), 4.19 (t, 2H, J 7.2), 3.39 (t, 2H, J 6.8), 1.90 (quint, 2H, J 7), 1.83 (quint, 2H, J 7), 1.41 (quint, 2H, J 7), 1.37–1.25 (m, 6H); $\delta_{\rm C}({\rm CDCl}_3)$ 155.53, 152.98, 150.15, 140.41, 119.71, 43.92, 33.86, 32.66, 30.05, 28.85, 28.53, 27.98, 26.54. Found: C, 48.05; H, 6.03; N, 21.51. Calc. for C₁₃H₂₀N₅Br: C, 47.86; H, 6.18; N, 21.47%.

9-(9-Bromononyl)adenine (3h). Yield 32%, mp 120.5–121.5 °C; $\delta_{\rm H}$ (CDCl₃) 8.37 (s, 1H), 7.79 (s, 1H), 5.89 (s, 2H, NH₂), 4.19 (t, 2H, *J* 7.2), 3.39 (t, 2H, *J* 6.8), 1.90 (quint, 2H, *J* 7), 1.84 (quint, 2H, *J* 7), 1.41 (quint, 2H, *J* 7), 1.36–1.25 (m, 8H); $\delta_{\rm C}$ (CDCl₃) 155.53, 152.97, 150.16, 140.42, 119.72, 43.95, 33.94, 32.74, 30.07, 29.19, 28.92, 28.59, 28.06, 26.60. Found: C, 49.43; H, 6.55; N, 20.78. Calc. for C₁₄H₂₂N₉Br: C, 49.42; H, 6.52; N, 20.58%.

7-[ω -(6-Aminopurin-9-yl)alkyl]-1,3-dimethylxanthine (1) and 1-[ω -(6-aminopurin-9-yl)alkyl]-3,7-dimethylxanthine (2). Into a solution of theophylline (1,3-dimethylxanthine) or theobrom-

ine (3,7-dimethylxanthine) (1.2 mmol) in DMF (50 ml), potassium carbonate (1 mmol) and 9-(ω -bromoalkyl)adenine (3) (1 mmol) were added. The mixture was stirred at room temperature for 40 h. The resulting mixture was evaporated to give a residue which was submitted to chromatography over silica gel. Elution of a mixture of ethyl acetate and methanol gave 1 or 2.

7-[2-(6-*Aminopurin*-9-*yl*)*ethyl*]-1,3-*dimethylxanthine* (1a).— Yield 43%, mp 290–293 °C; $\delta_{\rm H}$ (CDCl₃) 8.36 (s, 1H), 7.46 (s, 1H), 7.08 (s, 1H), 5.52 (s, 2H, NH₂), 4.81 (t, 2H, *J* 6.5), 4.73 (t, 2H, *J* 6.5), 3.56 (s, 3H), 3.46 (s, 3H); $\delta_{\rm H}$ ([²H₆]DMSO, 27 °C) 8.04 (s, 1H), 7.78 (s, 1H), 7.56 (s, 1H), 7.16 (s, 2H, NH₂), 4.66–4.59 (m, 4H), 3.38 (s, 3H), 3.21 (s, 2H); $\delta_{\rm H}$ ([²H₆]DMSO, 50 °C) 8.04 (s, 1H), 7.79 (s, 1H), 7.56 (s, 1H), 7.02 (s, 2H, NH₂), 4.67 (t, 2H, *J* 6.5), 4.60 (t, 2H, *J* 6.5), 3.38 (s, 3H), 3.24 (s, 3H); $\delta_{\rm C}$ ([²H₆]DMSO) 155.78, 154.42, 152.29, 150.98, 149.40, 148.45, 142.33, 140.53, 118.43, 106.05, 46.07, 43.04, 29.32, 27.50. Found: C, 49.02; H, 4.43; N, 37.05. Calc. for C₁₄H₁₅N₉O₂: C, 49.26; H, 4.43; N, 36.93%.

7-[3-(6-*Aminopurin*-9-*yl*)*propyl*]-1,3-*dimethylxanthine* (**1b**).— Yield 38%, mp 298–302 °C; $\delta_{\rm H}$ (CDCl₃) 8.37 (s, 1H), 7.83 (s, 1H), 7.82 (s, 1H), 5.55 (s, 2H, NH₂), 4.35 (t, 2H, *J* 6.5), 4.27 (t, 2H, *J* 6.5), 3.59 (s, 3H), 3.42 (s, 3H), 2.56 (quint, 2H, *J* 6.5); $\delta_{\rm H}$ ([²H₆]DMSO, 27 °C) 8.11 (s, 1H), 8.10 (s, 1H), 8.09 (s, 1H), 7.17 (s, 2H, NH₂), 4.30 (t, 2H, *J* 7.2), 4.16 (t, 2H, *J* 7.2), 3.41 (s, 3H), 3.21 (s, 3H), 2.40 (quint, 2H, *J* 7.2); $\delta_{\rm C}$ ([²H₆]DMSO) 155.83, 154.24, 152.17, 150.89, 149.42, 148.31, 142.38, 140.57, 118.64, 105.91, 43.88, 40.14, 30.17, 29.30, 27.45. Found: C, 50.73; H, 4.81; N, 35.64. Calc. for C₁₅H₁₇N₉O₂: C, 50.70; H, 4.82; N, 35.47%.

7-[4-(6-*Aminopurin*-9-y*l*)*butyl*]-1,3-*dimethylxanthine* (1c).— Yield 38%, mp 225–227 °C; $\delta_{\rm H}$ (CDCl₃) 8.34 (s, 1H), 7.79 (s, 1H), 7.51 (s, 1H), 5.50 (s, 2H, NH₂), 4.33 (br t, 2H, *J* 6.5), 4.25 (br t, 2H, *J* 6.5), 3.58 (s, 3H), 3.41 (s, 3H), 2.0–1.9 (m, 4H); $\delta_{\rm H}([^2{\rm H}_6]{\rm DMSO})$ 8.10 (s, 1H), 8.09 (s, 1H), 8.06 (s, 1H), 7.17 (s, 2H, NH₂), 4.26 (br, 2H), 4.14 (br, 2H), 3.42 (s, 3H), 3.21 (s, 3H), 1.75 (br, 4H); $\delta_{\rm C}([^2{\rm H}_6]{\rm DMSO})$ 155.82, 154.26, 152.20, 150.97, 149.42, 148.43, 142.43, 140.87, 118.71, 105.89, 45.62, 42.38, 29.40, 27.55, 27.20, 26.00. Found: C, 51.75; H, 5.39; N, 33.90. Calc. for C₁₆H₁₉N₉O₂: C, 52.03; H, 5.18; N, 34.13%.

7-[5-(6-Aminopurine-9-yl)pentyl]-1,3-dimethylxanthine

(1d).—Yield 40%, mp 204–206 °C; $\delta_{\rm H}$ (CDCl₃) 8.35 (s, 1H), 7.79 (s, 1H), 7.49 (s, 1H), 5.65 (s, 2H, NH₂), 4.26 (t, 2H, *J* 7.2), 4.20 (t, 2H, *J* 7.2), 3.59 (s, 3H), 3.41 (s, 3H), 1.97 (quint, 2H, *J* 7.2), 1.95 (quint, 2H, *J* 7.2), 1.37 (quint, 2H, *J* 7.2); $\delta_{\rm C}$ (CDCl₃) 155.45, 155.15, 153.04, 151.68, 150.15, 149.03, 140.79, 140.40, 119.69, 106.94, 46.86, 43.47, 30.31, 29.80, 29.40, 28.03, 23.34. Found: C, 53.53; H, 5.52; N, 33.14. Calc. for C₁₇H₂₁N₉O₂: C, 53.26; H, 5.52; N, 32.88%.

7-[6-(6-*Aminopurin*-9-*yl*)*hexyl*]-1,3-*dimethylxanthine* (1e).— Yield 44%, mp 185–186 °C; $\delta_{\rm H}$ (CDCl₃) 8.35 (s, 1H), 7.79 (s, 1H), 7.52 (s, 1H), 5.88 (s, 2H, NH₂), 4.26 (t, 2H, *J* 7.2), 4.20 (t, 2H, *J* 7.2), 3.59 (s, 3H), 3.40 (s, 3H), 1.91 (quint, 2H, *J* 7.2), 1.87 (quint, 2H, *J* 7.2), 1.39 (br quint, 4H, *J* 7.2); $\delta_{\rm C}$ (CDCl₃) 155.52, 155.14, 152.83, 151.71, 149.96, 148.97, 140.82, 140.35, 119.37, 106.98, 47.06, 43.83, 30.69, 29.85, 29.81, 28.03, 26.03, 25.79. Found: C, 51.44; H, 5.98; N, 29.88. Calc. for C₁₈H₂₃N₉O₂·H₂O: C, 52.04; H, 6.07; N, 30.34%.

7-[7-(6-*Aminopurin*-9-*yl*)*heptyl*]-1,3-*dimethylxanthine* (1f).— Yield 43%, mp 175–176 °C; $\delta_{\rm H}$ (CDCl₃) 8.36 (s, 1H), 7.79 (s, 1H), 7.52 (s, 1H), 5.94 (s, 2H, NH₂), 4.26 (t, 2H, *J* 7.2), 4.19 (t, 2H, *J* 7.2), 3.59 (s, 3H), 3.41 (s, 3H), 1.89 (quint, 2H, *J* 7.2), 1.85 (quint, 2H, *J* 7.2), 1.40–1.20 (m, 6H); $\delta_{\rm C}$ (CDCl₃) 155.51, 155.13, 152.91, 151.72, 150.13, 148.97, 140.79, 140.38, 119.67, 106.98, 47.16, 43.82, 30.77, 29.93, 29.78, 28.44, 28.01, 26.42, 26.16. Found: C, 53.29; H, 6.25; N, 29.38. Calc. for C₁₉H₂₅N₉O₂·H₂O: C, 53.14; H, 6.34; N, 29.35%.

7-[8-(6-*Aminopurin*-9-*yl*)*octyl*]-1,3-*dimethylxanthine* (1g).— Yield 37%, mp 140–141 °C; $\delta_{\rm H}$ (CDCl₃) 8.36 (s, 1H), 7.79 (s, 1H), 7.52 (s, 1H), 5.52 (s, 2H, NH₂), 4.26 (t, 2H, *J* 7.2), 4.18 (t, 2H, *J* 7.2), 3.59 (s, 3H), 3.41 (s, 3H), 1.87 (quint, 4H, *J* 7.2), 1.35– 1.25 (m, 8H); $\delta_{\rm C}$ (CDCl₃) 155.78, 155.11, 152.94, 151.72, 150.06, 148.94, 140.82, 140.30, 119.65, 106.97, 47.20, 43.83, 30.81, 29.97, 29.78, 28.78, 28.77, 28.00, 26.45, 26.19. Found: C, 56.60; H, 6.49; N, 29.51. Calc. for C₂₀H₂₇N₉O₂: C, 56.46; H, 6.40; N, 29.63%.

7-[10-(6-*Aminopurin*-9-*yl*)*decyl*]-1,3-*dimethylxanthine* (1i).— Yield 38%, mp 161–162 °C; $\delta_{\rm H}$ (CDCl₃) 8.37 (s, 1H), 7.78 (s, 1H), 7.52 (s, 1H), 5.83 (s, 2H, NH₂), 4.27 (t, 2H, *J* 7.2), 4.19 (t, 2H, *J* 7.2), 3.60 (s, 3H), 3.41 (s, 3H), 1.87 (quint, 4H, *J* 7.2), 1.35–1.20 (m, 12H); $\delta_{\rm C}$ (CDCl₃) 155.59, 155.13, 152.84, 151.74, 150.09, 148.94, 140.82, 140.39, 119.63, 107.00, 47.31, 43.96, 30.87, 30.03, 29.79, 29.23, 29.22, 28.93, 28.92, 28.01, 26.56, 26.34. Found: C, 58.51; H, 6.76; N, 27.80. Calc. for C₂₂H₃₁N₉O₂: C, 58.26; H, 6.89; N, 27.79%.

1-[2-(6-*Aminopurin*-9-y*l*)*ethyl*]-3,7-*dimethylxanthine* (**2a**).— Yield 30%, mp 289–292 °C; $\delta_{\rm H}$ (CDCl₃) 8.23 (s, 1H), 7.77 (s, 1H), 7.47 (s, 1H), 5.48 (s, 2H, NH₂), 4.54 (t, 2H, *J* 6.0), 4.48 (t, 2H, *J* 6.0), 3.87 (s, 3H), 3.52 (s, 3H); $\delta_{\rm H}$ ([²H₆]DMSO) 8.05 (s, 1H), 7.96 (s, 1H), 7.89 (s, 1H), 7.10 (s, 2H, NH₂), 4.41 (t, 2H, *J* 5.2), 4.26 (t, 2H, *J* 5.2), 3.75 (s, 3H), 3.32 (s, 2H); $\delta_{\rm C}$ ([²H₆]DMSO) 155.69, 154.12, 151.91, 150.78, 149.88, 148.29, 142.77, 140.84, 118.49, 106.38, 41.01, 40.37, 32.92, 29.19. Found: C, 49.24; H, 4.50; N, 36.78. Calc. for C₁₄H₁₅N₉O₂: C, 49.26; H, 4.43; N, 36.93%.

1-[3-(6-*Aminopurin*-9-*yl*)*propyl*]-3,7-*dimethylxanthine* (**2b**).— Yield 23%, mp 269–272 °C; $\delta_{\rm H}$ (CDCl₃) 8.34 (s, 1H), 7.99 (s, 1H), 7.50 (s, 1H), 5.49 (s, 2H, NH₂), 4.29 (t, 2H, *J* 7.2), 4.13 (t, 2H, *J* 7.2), 3.97 (s, 3H), 3.56 (s, 3H), 2.35 (quint, 2H, *J* 7.2); $\delta_{\rm H}$ ([²H₆]DMSO) 8.15 (s, 1H), 8.11 (s, 1H), 7.97 (s, 1H), 7.08 (s, 2H, NH₂), 4.19 (t, 2H, *J* 7.2), 3.92 (t, 2H, *J* 7.2), 3.86 (s, 3H), 3.39 (s, 3H), 2.14 (quint, 2H, *J* 7.2); $\delta_{\rm C}$ ([²H₆]DMSO) 156.09, 154.64, 152.44, 151.10, 149.77, 148.51, 143.16, 141.16, 119.02, 106.92, 41.36, 38.42, 33.39, 29.62, 28.17. Found: C, 49.63; H, 4.80; N, 34.81. Calc. for $C_{15}H_{17}N_9O_2$ ·0.5H₂O: C, 49.45; H, 4.98; N, 34.60%.

1-[4-(6-*Aminopurin*-9-y*l*)*butyl*]-3,7-*dimethylxanthine* (2c).— Yield 28%, mp 230–233 °C; $\delta_{\rm H}$ (CDCl₃) 8.34 (s, 1H), 7.88 (s, 1H), 7.50 (s, 1H), 5.83 (s, 2H, NH₂), 4.28 (t, 2H, *J* 7.2), 4.08 (t, 2H, *J* 7.2), 3.98 (s, 3H), 3.57 (s, 3H), 1.96 (quint, 2H, *J* 7.2), 1.73 (quint, 2H, *J* 7.2); $\delta_{\rm C}$ (CDCl₃) 155.45, 155.27, 152.94, 151.50, 150.10, 148.89, 141.58, 140.77, 119.67, 107.63, 43.35, 40.25, 33.60, 29.75, 27.27, 24.99. Found: C, 49.69; H, 5.21; N, 32.89. Calc. for C₁₆H₁₉N₉O₂·H₂O: C, 49.60; H, 5.46; N, 32.54%.

1-[5-(6-*Aminopurine*-9-*yl*)*pentyl*]-3,7-*dimethylxanthine* (2d).—Yield 35%, mp 216–218 °C; $\delta_{\rm H}$ (CDCl₃) 8.35 (s, 1H), 7.80 (s, 1H), 7.50 (s, 1H), 5.48 (s, 2H, NH₂), 4.21 (t, 2H, *J* 7.2), 4.00 (t, 2H, *J* 7.2), 3.98 (s, 3H), 3.57 (s, 3H), 1.97 (quint, 2H, *J* 7.2); 1.73 (quint, 2H, *J* 7.2), 1.42 (quint, 2H, *J* 7.2); $\delta_{\rm H}$ ([²H₆]DMSO) 8.13 (s, 1H), 8.13 (s, 1H), 7.99 (s, 1H), 7.19 (s, 2H, NH₂), 4.14 (t, 2H, *J* 7.2), 3.88 (s, 3H), 3.83 (t, 2H, *J* 7.2), 3.40 (s, 3H), 1.84 (quint, 2H, *J* 7.2), 1.58 (quint, 2H, *J* 7.2), 1.26 (quint 2H, *J* 7.2); $\delta_{\rm C}$ ([²H₆]DMSO) 156.31, 154.74, 152.70, 151.17, 149.93, 148.56, 143.25, 141.16, 119.11, 107.00, 43.11, 40.51, 33.51, 29.71, 29.51, 27.37, 23.78. Found: C, 53.22; H, 5.50; N, 32.89. Calc. for C₁₇H₂₁N₉O₂: C, 53.26; H, 5.52; N, 32.88%.

1-[6-(6-*Aminopurin*-9-*yl*)*hexyl*]-3,7-*dimethylxanthine* (**2e**).— Yield 38%, mp 202–204 °C; δ_{H} (CDCl₃) 8.35 (s, 1H), 7.81 (s, 1H), 7.50 (s, 1H), 5.50 (s, 2H, NH₂), 4.19 (t, 2H, *J* 7.2), 3.98 (t, 2H, *J* 7.2), 3.98 (s, 3H), 3.57 (s, 3H), 1.92 (quint, 2H, *J* 7.2), 1.66 (quint, 2H, *J* 7.2), 1.45–1.38 (m, 4H); δ_{C} (CDCl₃) 155.55, 155.31, 152.94, 151.51, 150.10, 148.78, 141.46, 140.41, 119.61, 107.68, 43.90, 41.12, 33.58, 29.90, 29.70, 27.76, 26.32, 26.29. Found: C, 53.83; H, 5.75; N, 31.35. Calc. for C₁₈H₂₃N₉O₂: C, 54.40; H, 5.83; N, 31.72%.

1-[7-(6-*Aminopurin*-9-*yl*)*heptyl*]-3,7-*dimethylxanthine* (**2f**).— Yield 37%, mp 203–205 °C; δ_{H} (CDCl₃) 8.36 (s, 1H), 7.81 (s, 1H), 7.50 (s, 1H), 5.53 (s, 2H, NH₂), 4.19 (t, 2H, *J* 7.2), 3.98 (t, 2H, *J* 7.2), 3.98 (s, 3H), 3.57 (s, 3H), 1.90 (quint, 2H, *J* 7.2), 1.64 (quint, 2H, *J* 7.2), 1.45–1.30 (m, 6H); δ_{C} (CDCl₃) 155.45, 155.34, 152.77, 151.51, 150.13, 148.78, 141.41, 140.54, 119.70, 107.71, 43.92, 41.25, 33.58, 29.97, 29.69, 28.68, 27.87, 26.70, 26.52. Found: C, 55.18; H, 6.10; N, 30.59. Calc. for C₁₉H₂₅N₉O₂: C, 55.46; H, 6.12; N, 30.64%.

 $\begin{array}{l} 1\mbox{-}[9\mbox{-}(6\mbox{-}Aminopurin\mbox{-}9\mbox{-}yl\mbox{)}nonyl\mbox{]-}3\mbox{,}7\mbox{-}dimethylxanthine} $$(\mathbf{2h})\mbox{.}-$ Yield 32%, mp 170–171 °C; $\delta_{\rm H}({\rm CDCl}_3)$ 8.37 (s, 1H), 7.80 (s, 1H), 7.49 (s, 1H), 5.63 (s, 2H, NH₂), 4.19 (t, 2H, J 7.2), 3.98 (t, 2H, J 7.2), 3.98 (s, 3H), 3.57 (s, 3H), 1.89 (quint, 2H, J 7.2), 1.63 (quint, 2H, J 7.2), 1.40–1.25 (m, 10H); $\delta_{\rm C}({\rm CDCl}_3)$ 155.62, 155.32, 152.83, 151.51, 150.02, 148.73, 141.42, 140.43, 119.46, 107.71, 44.00, 41.42, 33.58, 30.02, 29.69, 29.21, 29.10, 28.91, 27.97, 26.85, 26.59. Found: C, 55.89; H, 6.61; N, 28.01. Calc. for ${\rm C_{21}H_{29}N_9O_2\mbox{-}0.5H_2O}$: C, 56.01; H, 6.74; N, 28.11%.

1-[10-(6-*Aminopurin*-9-*yl*)*decyl*]-3,7-*dimethylxanthine* (**2i**).— Yield 30%, mp 125–126 °C; $\delta_{\rm H}$ (CDCl₃) 8.37 (s, 1H), 7.79 (s, 1H), 7.49 (s, 1H), 5.78 (s, 2H, NH₂), 4.19 (t, 2H, *J* 7.2), 3.98 (t, 2H, *J* 7.2), 3.98 (s, 3H), 3.57 (s, 3H), 1.89 (quint, 2H, *J* 7.2), 1.64 (quint, 2H, *J* 7.2), 1.38–1.23 (m, 12H); $\delta_{\rm C}$ (CDCl₃) 155.66, 155.32, 152.89, 151.50, 150.10, 148.73, 141.38, 140.42, 119.63, 107.70, 43.98, 41.46, 33.56, 30.04, 29.67, 29.31, 29.28, 29.20, 28.96, 28.02, 26.93, 26.61. Found: C, 56.60; H, 6.93; N, 26.81. Calc. for C₂₂H₃₁N₉O₂·H₂O: C, 56.04; H, 7.05; N, 26.73%.

Deuterium exchange of the C-8 hydrogen of the adenine ring of 1 and 2

The solution of 1a-f or 2a-f (50 mg) in D₂O (20-50 ml) was heated at reflux temperature for 12-14 h. The compounds 1i, 2h and 2i (50 mg) were not sufficiently soluble in D₂O (50 ml) but the solutions containing the insoluble materials were heated at reflux temperature for 48 h. The reaction mixtures were evaporated to give the corresponding compounds containing the 8-deuterioadenine moiety.

References

- 1 (a) W. Saenger, *Principles of Nucleic Acid Structure*, Springer Verlag, New York, 1984; (b) C. A. Hunter, *J. Mol. Biol.*, 1993, **230**, 1025.
- 2 A. Sarai, J. Mazur, R. Nussinov and R. J. Jernigan, *Biochemistry*, 1988, 27, 8498.
- 3 J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, *J. Mol. Biol.*, 1984, **180**, 385.
- 4 E. C. Breinlinger and V. M. Rotello, J. Am. Chem. Soc., 1997, 119, 1165.
- 5 (a) M. Sundaralingam and S. K. Arora, J. Mol. Biol., 1972, 71, 49;
 (b) C. Hélène and G. Lancelot, Prog. Biophys. Mol. Biol., 1982, 39, 1;
 (c) T. Ishida, M. Shibata, K. Fujii and M. Inoue, Biochemistry, 1983, 22, 3571.
- 6 (a) F. Diederich, Cyclophanes, Monographs in Supermolecular Chemistry, The Royal Society of Chemistry, Cambridge, UK, 1994; (b) J.-H. Lehn, Supramolecular Chemistry, VCH, Verlagsgesellschaft, Weinheim, 1995.
- 7 (a) B. Askew, P. Ballester, C. Buhr, K. S. Jeong, S. Jones, K. Parris, K. Williams and J. Rebek, Jr., J. Am. Chem. Soc., 1989, 111, 1082;
 (b) S. Goswani, A. D. Hamilton and D. Van Eigen, J. Am. Chem. Soc., 1989, 111, 3425;
 (c) J. C. Adrian, Jr. and C. S. Wilcox, J. Am. Chem. Soc., 1989, 111, 8055;
 (d) J. F. Blake and W. L. Jorgensen, J. Am. Chem. Soc., 1990, 112, 7269;
 (e) S. C. Zimmerman, W. Wu and Z. Zeng, J. Am. Chem. Soc., 1991, 113, 196;
 (f) S. Claude, J.-M. Lehn, F. Schmidt and J.-P. Vigneron, J. Chem. Soc., Chem. Commun., 1991, 1182.
- 8 (a) D. T. Browne, J. Eisinger and N. J. Leonard, J. Am. Chem. Soc., 1968, **90**, 7302; (b) N. J. Leonald and K. Ito, J. Am. Chem. Soc., 1973, **95**, 4010; (c) Y. Inaki, R. Renge, K. Kondo and K. Takemoto, Makromol. Chem., 1975, **176**, 2683; (d) T. Itahara, J. Chem. Soc., Perkin Trans. 2, 1996, 2695.

- 9 K. Mutai, B. A. Gruber and N. J. Leonald, J. Am. Chem. Soc., 1975, 97, 4095.
- 10 N. J. Leonald and R. F. Lambert, J. Org. Chem., 1969, 34, 3240.
- (a) J. Bolte, C. Demuynck, J. Lhomme, M. C. Fournie-Zaluski and B. P. Roques, *Biochemistry*, 1979, 18, 4928; (b) J. Bolte, C. Demuynck, M. F. Lhomme, J. Lhomme, J. Barbet and B. P. Roques, J. Am. Chem. Soc., 1982, 104, 760; (c) J. F. Constant, P. Laugaa, B. P. Roques and J. Lhomme, *Biochemistry*, 1988, 27, 3997.
- 12 A. Fkyerat, M. Demeunynck, J.-P. Constant, P. Michon and J. Lhomme, J. Am. Chem. Soc., 1993, 115, 9952.
- 13 L. F. Newcomb and S. H. Gellman, J. Am. Chem. Soc., 1994, 116, 4993.
- 14 H. A. McKenzie, in *Data for Biochemical Research*, ed. R. M. Dawson, D. C. Elliott, W. H. Elliott and K. M. Jones, Clarendon Press, Oxford, 1969, ch. 20. The values of pD of the buffer solutions were determined by means of a pH meter and were uncorrected.
- 15 (a) K. Kamiichi, M. Doi, M. Nabae, T. Ishida and M. Inoue, J. Chem. Soc., Perkin Trans. 2, 1987, 1739; (b) M. Tarui, N. Nomoto, Y. Hasegawa, K. Minoura, M. Doi and T. Ishida, Chem. Pharm. Bull., 1996, 44, 1998.
- 16 (a) K. S. Kim, J. Y. Lee, S. J. Lee, T. K. Ha and D. H. Kim, J. Am. Chem. Soc., 1994, 116, 7399; (b) D. A. Dougherty, Science, 1996, 271, 163.
- 17 (a) S. B. Ferguson, E. M. Sanford, E. M. Seward and F. Diederich, J. Am. Chem. Soc., 1991, **113**, 5410; (b) K. M. Guckian, B. A. Schweitzer, R. X. Ren, C. J. Sheils, P. L. Paris, D. C. Tahmassebi and E. T. Kool, J. Am. Chem. Soc., 1996, **118**, 8182.

Paper 7/08866C Received 9th December 1997 Accepted 3rd April 1998